
Geldreich, Katharina, Alexandra Simon, and Peter Hubwieser. 2019. «A Design-Based Research Approach for introducing Algorithmics and Pro-
gramming to Bavarian Primary Schools. Theoretical Foundation and Didactic Implementation». MedienPädagogik 33, (Februar), 53–75.
https://doi.org/10.21240/mpaed/33/2019.02.15.X.

ISSN 1424-3636www.medienpaed.com

Themenheft Nr. 33: Medienpädagogik und Didaktik der Informatik.
Eine Momentaufnahme disziplinärer Bezüge und schulpraktischer Entwicklungen.
Herausgegeben von Torsten Brinda, Ira Diethelm, Sven Kommer und Klaus Rummler





Th
is

 w
or

k
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
Co

m
m

on
s

At
tr

ib
ut

io
n

4.
0

In
te

rn
at

io
na

l L
ic

en
se

ht
tp

://
cr

ea
ti

ve
co

m
m

on
s.

or
g/

lic
en

se
s/

by
/4

.0
/

A Design-Based Research Approach for introducing
Algorithmics and Programming to Bavarian
Primary Schools
Theoretical Foundation and Didactic Implementation

Katharina Geldreich, Alexandra Simon and Peter Hubwieser

Abstract
Computer Science (CS) is increasingly entering the early levels of childhood education,
like primary school or even kindergarten. Although Germany has not yet developed
mandatory guidelines for how to deal with these new topics, Bavaria seems to consider
extending the field of computer science education to the primary sector in the long term.
It is therefore becoming more and more necessary to gain insight into which teaching
methods and content would be suitable for students at primary level. To investigate the
characteristics of effective programming courses for primary schools, we developed a
three-day introductory course following the design-based research approach. This article
will set focus on both the theoretical foundation resulting from this specific research
approach and the didactic implementation of the theoretical framework.

Design-Based Research als Ansatz zur Einführung von Algorithmik und Program-
mierung an bayerischen Grundschulen. Theoretische Fundierung und didaktische
Umsetzung

Zusammenfassung
Informatik soll in den kommenden Jahren stärker in die frühe Bildung integriert werden
und somit den Weg in Grundschulen oder gar in Kindergärten finden. Obwohl Deutschland
noch keine verbindlichen Richtlinien für den Umgang mit diesen neuen Themen entwi-
ckelt hat, erwägt das Bundesland Bayern bereits den Ausbau der Didaktik der Informatik
zur Lehrerausbildung im Bereich der Grundschule. Das Erforschen von Unterrichtsme-
thoden und -inhalten, die sich für diesen Bereich eignen, wird somit immer notwendiger.
Um die Eigenschaften praktikabler und effektiver Informatikkurse für die Primarstufe zu
untersuchen, nutzen wir den Ansatz der Design-Based Research, um einen dreitägigen
Programmierkurs für Dritt- und Viertklässler zu entwickeln. Dieser Beitrag beschäftigt
sich vorrangig mit der theoretischen Grundlage für die Kursentwicklung, die aus dem For-
schungsansatz entwickelt wurde. Ausserdem wird die konkrete didaktische Umsetzung
der theoretischen Vorarbeiten in Form des Kurskonzepts ausführlich beschrieben.

https://doi.org/10.21240/mpaed/33/2019.02.15.X

54

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Introduction
In the past few years, the discussion about the necessity of computer science (CS)
and especially programming in primary education is growing steadily (Prottsman
2014; Bell and Duncan 2018). Introducing computer science concepts from an early
age seems to have several positive consequences on the children (Duncan, Bell, and
Tanimoto 2014). Learning to use computers not only as users but also as creators and
gathering positive experiences in computing can strengthen their self-confidence to-
wards CS and technology in general (Topi 2015). It may also prevent common miscon-
ceptions and prejudices towards computer science regarding the nature of the sub-
ject and the role of gender (Funke, Berges, and Hubwieser 2016). Several countries,
such as Australia (Falkner, Vivian, and Falkner 2014), the United Kingdom (Brown et
al. 2013) or Russia (Khenner and Semakin 2014) have already introduced computer
science in their primary school curricula. Other countries like France, Poland, and
New Zealand are also in the process of implementing notions of problem-solving,
algorithmic thinking and basic programming in their curricula (Armoni 2018).

While Germany has not yet developed mandatory guidelines for how to deal with
these new topics, the Federal Government is already pleading for the use of digi-
tal media in primary schools in order to promote the students' digital competencies
(BMBF 2016). Since the federal state of Bavaria is already considering to expand the
field of computer science education to the primary sector in the long term (StMWI
2017), it is all the more important to investigate which teaching methods and con-
tents would be suitable for Bavarian primary schools.

Extending computer science to the early level of education requires practical and
theoretical knowledge in a variety of disciplines (Duncan, Bell, and Tanimoto 2014).
We wanted to apply a research design that takes this aspect into account and enables
close interaction between researchers and practitioners. Thus, we chose the design-
based research (DBR) approach to develop an effective primary school course for
learning the basic concepts of programming.

The following sections will give a brief introduction to DBR and the research de-
sign we developed according to the approach. We will then set focus on the theoreti-
cal foundation and didactic implementation of the course. The findings of the litera-
ture review, the resulting theoretical framework as well as the corresponding course
concept are presented. The article closes with several conclusions regarding the DBR
approach and will give an outlook on our future work.

Design-Based Research
The term design-based research goes back to Brown (1992) and Collins (1992) who
placed their focus on driving innovations. They developed «design experiments» as
a way to carry out formative research to test and refine educational designs under

55

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

realistic and situative conditions. Based on the design-experiment, further approach-
es and terms have emerged, which can be partly interpreted as synonyms: design
research, design-based research, design experiment, educational design research,
development research (see The Design-Based Research Collective 2003; Richey and
Klein 2005; van den Akker et al. 2006). They all share the aim of designing and devel-
oping interventions as solutions to a complex problem for which there are few or no
validated principles or guidelines available (Plomp 2007). Wang and Hannafin see
design-based research as an overriding notion and define it as

«a systematic but flexible methodology aimed to improve educational prac-
tices through iterative analysis, design, development, and implementation,
based on collaboration among researchers and practitioners in real-world set-
tings, and leading to contextually-sensitive design principles and theories»
(2005, 6).

In this continuous iterative process, design changes are made, assessed and refined
to improve the design.

Different versions of this process can be found in literature, all of which con-
tain similar phases and differ only slightly (Collins, Joseph, and Bielaczyc 2004;
Reinmann 2005; Jahn 2014). Authors agree that DBR consists of the following com-
ponents (Plomp 2007, 15):

–– preliminary research: Review of literature and projects relevant to the chosen top-
ic that results in design principles for the intervention.

–– prototyping phase: Development of an intervention prototype that is tested, eval-
uated and revised.

–– assessment phase: Evaluation whether the intervention is effective. It is also in-
vestigated how the target users can work with it and are willing to apply it.

Formative evaluation takes place in all the three phases and iterative cycles of DBR.
Mixed research methods are used to maximize the objectivity, validity, and applica-
bility of the ongoing research (Wang and Hannafin 2005).

Using DBR to develop a programming course for Bavarian primary schools

Research Design
We chose the design-based research approach because, on the one hand, we wanted
to develop a practicable primary school course and, on the other hand, we wanted
to investigate the students' behaviour and learning outcomes. A summary of the re-
search design is shown in Figure 1.

56

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

The basis of our research design is a broad-based literature review which covers
the field of instructional design, teaching quality, computer science education and
cognitive development. Parallel to this, we conducted interviews with five primary
school teachers who had no relevant previous experience with computer science (see
Funke, Geldreich, and Hubwieser 2016) and examined the Bavarian primary school
curriculum for possible links to computer science. At the end of this analysis phase,
a conceptual framework was formulated that also considered the specific prerequi-
sites of the Bavarian school system. The results of this analysis phase and the derived
principles are described in more detail below.

Fig. 1.:	

 theoretical
framework

course
version I

course
version II

course
version III

course
version IV

pilot study
(n=9)

field test
with 2 classes

(n=38)

field test
with 4 classes

(n=66)

teacher
interviews

(n=2)

tryout of
other tasks

(n=19)

literature
review

 teacher
interviews

(n=5)

Research design.

After this phase of preliminary research, we developed a first course prototype based
on the framework. The first drafts of both the theoretical framework and the result-
ing prototype were discussed with several experienced practitioners and an expert in
the field of computer science education.

We tested the course prototype with a small group (n=9) in a pilot study that
was carried out at a student research centre led by our university. After revising and
optimising the tasks and some changes in the course timeframe, we conducted the
course again with two fourth-grade classes (n=38) and also interviewed the accom-
panying teachers after the courses. We once again revised some of the tasks and
made changes in the structure and design of the materials. After testing a variety of
other methods with children at the student research centre (n=19), we made another
field test with one third-grade and three fourth-grade classes (n=66). Since in Bavaria
data may only be collected at schools in exceptional cases and with special permis-
sion, these field tests were carried out at our university. The courses were taught
in German language by different instructors, including a formally educated primary
school teacher and researchers in the field of CS education. The resulting course con-
cept can be read in the further course of the article.

57

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Research Questions and Mixed-Methods
Our research is supposed to investigate the characteristics of an effective primary
school course concept for learning the basic concepts of programming. To answer
this overarching question and to assess to what extent the intervention has served
its purpose, we investigate several questions in our field studies:

–– How do the students behave and collaborate during the learning process?
–– How do the programming results relate to the learning process?
–– Which differences can be identified between the behavior of girls and boys?

During the field tests, we collected data using a mixed-methods approach including
the following methods:

–– Videography: To analyze the interactions of the children with each other and with
the teacher, we recorded the whole courses with at least two cameras.

–– Group interviews and questionnaires: A variety of interviews and reflection meth-
ods were used to get an idea of the students’ prior knowledge, what they think
about programming and how they feel after the course.

–– Screen and audio capturing: When the students were working on computers,
screens and audio of every student were captured with special software. By doing
so, we wanted to get an insight into the students working methods.

–– Scratch programming products: All Scratch programs were saved to analyze them
in detail.

Several evaluations have already been carried out, for example, an analysis of the
structure and quality of the students’ programming results (Funke, Geldreich, and
Hubwieser 2017) and an analysis of the relationship between the students’ gender
and the characteristics of the program they created (Funke and Geldreich 2017).

Literature Review
Following the methodology of design-based research, we took into account theoreti-
cal principles and prior research from various disciplines, including not only com-
puter science education but also developmental psychology, cognitive science and
instructional design. The following section presents selected results of the literature
review that were relevant for the design of the course concept in the subsequent DBR
process. It also gives a brief insight into the Bavarian primary school curriculum.

58

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Cognitive Development of Primary School Children
If we want to design a computer science course, we must align the content, methods
and material to the developmental stage of the target group - in our case primary
school children. Piaget and Inheler (1969) found out that older children think dif-
ferently than younger ones and proposed a theory of intellectual development over
four stages. According to this theory, primary school children are in the concrete ope-
rational stage (7-11 years): the students begin to think logically about actual, specific
events but have difficulties in understanding abstract or hypothetical concepts. Ac-
cording to Piaget, the formal operational stage which includes the ability to think
about abstract concepts is only reached at the age from 11 to 16 years. However,
Neo-Piagetian theories (Case 1992; Morra et al. 2007) concluded that the develop-
ment stages depend on a variety of other factors, e.g., learning area, and cannot be
assigned exactly to a particular age. Apart from the classification in stages, Piaget's
work valued the importance of active learning in which children are free to explore,
question and try out. Teachers should also provide visual aids or props to support
children’s thinking. He further recommends using familiar examples to introduce
more complex and abstract ideas (Piaget 1976).

Bruner (1966) argued that children could learn any material as long as the in-
structions are organized appropriately. Every concept should be encountered several
times in a progressive spiral: at first in a concrete way or with physical actions (enac-
tive representation), then within images or illustrations (iconic representation) and at
last using codes or symbols, such as language (symbolic representation).

The work of Vygotsky (1978) deals, among other things, with the fundamental
role of social interactions in the development of children. His notion of the zone of
proximal development (ZPD) describes the gap between what a child can achieve
alone and what it could potentially achieve with the help and guidance from some-
one more knowledgeable, skilled or experienced. In the interaction with others,
children could get instructions or advice that allows them to develop skills they can
afterward use on their own. Therefore, it follows that it’s beneficial for students to
work collaborative – especially in groups of mixed ability.

Instructional Design
Merrill et al. (1996) describe Instructional Design as «a technology for the develop-
ment of learning experiences and environments which promote the acquisition of
specific knowledge and skill by students». One aspect which is of particular impor-
tance to this development is motivation. Keller's ARCS Model (1983, 1987) defines
four essential conditions, that should be met in order to get and keep students’ moti-
vation: Attention (getting and sustaining attention by appropriate stimuli and a varie-
ty of methods), Relevance (making the content count, e.g. by linking the instructions

59

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

to the students’ life), Confidence (giving the impression that the students can suc-
ceed if they exert some effort) and Satisfaction (providing occasions where the stu-
dents can feel good about their accomplishments). For each condition, Keller lists
additional subcategories as well as strategies to fulfill them.

Mayer's cognitive theory of multimedia learning (2001, 2005) focuses primarily
on the optimized integration of text and image presentation in learning contents. In
this context, text can be spoken as well as written, and images can be illustrations,
photos and also animations or videos. He suggests that learning occurs when we
build mental representations of these various elements and formulates a variety of
principles, that should support this process. According to Mayer, the most relevant
multimedia instructional principles for learning opportunities are: Signaling Principle
(highlight the organization of the material), Coherence Principle (avoid unnecessary
content), Spatial Contiguity Principle (place corresponding words and pictures near
each other), Segmenting Principle (divide lessons in user-paced segments), Multime-
dia Principle (students learn better from words and pictures than from words alone)
and Personalization Principle (use conversational style rather than formal style).

Fundamental to Mayer's work is the cognitive load theory which has been devel-
oped by Sweller and Chandler (1991). It suggests that the construction of instruction-
al material can influence the learning process by directing the cognitive resources to
activities which are relevant to learning and not just preliminaries to it. According
to Sweller et al. (1998) there exist three types of cognitive load: intrinsic, extrane-
ous and germane. Intrinsic cognitive load refers to the inherent difficulty of the con-
tent being learned; extraneous cognitive load refers to the effort which is caused by
factors that aren't central to the content, e.g., presentation methods, instructional
procedures; germane cognitive load refers to the effort a learner has to make to un-
derstand the material by schema acquisition. It is assumed that working memory
can only process a limited amount of information at one time and therefore learning
is interrupted when this number is exceeded – a cognitive overload occurs (De Jong
2010). While intrinsic cognitive load can’t be affected, we can prevent this overload
by balancing extraneous and germane cognitive load. We can avoid the unnecessary
extraneous load by, for example, removing everything that distracts the learner from
the essential. Sweller et al. (1998) describe several effects, which can reduce extrane-
ous cognitive load and can partly be found in Mayer's cognitive theory of multimedia
learning (2001, 2005). The worked example effect, for instance, describes how we can
reduce extraneous cognitive load by using step-by-step demonstrations of how to
solve tasks and problems. Another effect, which is also particularly interesting for
our topic is the completion problem effect. It states that one can reduce the size of a
problem by providing a partial solution that must be completed.

60

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Quality Criteria for Teaching and Teaching Materials
A research tradition that sets its focus on teaching quality is working with a pro-
cess-product model (Dunkin and Biddle 1974; Shuell 1996) that relates the teach-
ing process to the learning outcome. It’s assumed that high-quality teaching leads
to positive learning outcomes, which in turn enables us to identify characteristics
of good teaching. Of course, this effect is mediated by student characteristics (e.g.,
pre-knowledge, self-concept of ability, interest), the classroom context (e.g., class
size) and the prerequisites of the teacher which has led to more and more differen-
tiated so-called supply-use models (Brühwiler and Blatchford 2011; Creemers and
Kyriakides 2007; Pianta and Hamre 2009). Even if studies showed that we can not
assume a direct effect of teaching on the learning outcome (Winne 1987; Weinert,
Schrader, and Helmke 1989), these models give us further hints when looking for
criteria to develop appropriate teaching methods and materials. Although the termi-
nology differs, three recurring overarching dimensions have been identified, that are
considered essential to good teaching (Klieme, Pauli, and Reusser 2009; Seidel and
Shavelson 2007):
1.	 classroom management, clarity and structure,
2.	 potential for cognitive activation and,
3.	 learning support through monitoring of the learning process, individual feedback

and adaptive instruction.

The intention of cognitive activation is engaging students in higher-level think-
ing. This can be achieved by challenging tasks and conveying cognitive strategies
such as summarizing, questioning and predicting (Mayer 2004). The items of the 2012
PISA student questionnaire (OECD 2013) give us an idea how to create cognitive acti-
vating tasks. For example, they could encourage the students to reflect on problems,
ask them to apply what they have learned to new contexts, use problems with multi-
ple solutions or present problems with no immediately apparent method of solution.
Beyond challenging the students, the tasks should also be prepared in a way that
they can be adapted to different learning prerequisites and abilities of the students
(Baumert et al. 2010).

Teaching Computer Science
In their Guide to Teaching Computer Science, Hazzan et al. (2011) emphasize the im-
portance of the learners’ active acquisition of ideas. To facilitate this throughout a
lesson or a course, they introduce the Active Learning Based Teaching Model that con-
sists of four successive stages: trigger, activity, discussion and summary. In the first
stage (trigger), the topic of the class/course is supposed to be introduced in a non-
traditional fashion, i.e., it should raise questions or dilemmas. In the second stage

61

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

(activity), the students get to work on the presented trigger. In the ensuing discus-
sion, products, topics or thoughts, which originated during the activity stage, are pre-
sented to the entire class and discussed. While the teacher holds back with judging
the students' contributions and confines himself only to highlight important ideas
presented by the students, the classmates are encouraged to express their opinions.
In the summary, the teacher summarizes, highlights and emphasizes important con-
cepts that were addressed during the previous stages.

In addition to the learners' activity, they underline that the development of prob-
lem-solving skills should be the core of every introductory CS course. They propose
different steps of a problem-solving process that the students should undergo. The
process starts with outlining the problem requirements and understanding what
the problem is about (problem analysis). After that, the students should think about
alternative ways to solve the problem (alternative consideration) and select one of
them (choosing an approach). The problem is then to be divided into subtasks (prob-
lem decomposition) for which algorithms are developed (algorithm development). In
a next step, the algorithms are checked for correctness (algorithm correctness) and
efficiency (algorithm efficiency). In the reflection at the end of the process, the stu-
dents should have a chance to analyse the process they went through and conclude
possible improvements.

As already described in the section Instructional Design, motivation plays an im-
portant role in the outcome of learning situations. Martin (2017) describes a set of
learning dimensions, that can help increase personal motivation when learning to
program. The dimensions go back to the results of four fieldwork studies, which were
carried out with participants from pre-school to university. Regarding the design of
programming tasks, open tasks seem to be more motivating (see also the work of
Petre and Price 2004). Besides, students seem much more motivated, when the tasks
are relevant to their daily life experience, when they can personalize their programs
and when they have a chance to share the products of their learning with others.

Regarding the arrangement of the learning experience, it's recommended to use
a flexible structure with sufficient opportunities for learners to iterate the introduced
concepts and influence the direction of their learning process. To prevent wasted
effort, learners should have the opportunity to get frequent feedback during a task.
The grouping of the students (working alone, in pairs or groups) and the shape of the
session regarding the physical environment can also have a strong influence on the
learners’ motivation – the recommendations on both aspects, however, are varying
with the given circumstances and the respective course.

Caspersen and Bennedsen (2007) describe how an introductory object-oriented
programming course can be designed based on cognitive science and educational
psychology. They primarily focus on how the cognitive load theory, cognitive ap-
prenticeship and the theory of worked examples can be applied. Since they work

62

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

with university students, not all suggestions can be transferred to the primary school
context – still their advises how to use worked examples could also be very suitable
for younger students. To help the students developing schemes and transfer the
learned, it is recommended to work with multiple examples that increase in com-
plexity and vary in the form of the problem type. Examples should not be used ex-
clusively, and they should alternate with matching problem tasks. Gray et al. (2007)
point out that the transition from complete worked examples to solving problems
only works if the problems are simple. To further reduce cognitive load, they suggest
using partially worked examples that contain less and less worked steps and can be
completed in stages. They provide a variety of these fading worked examples for dif-
ferent concepts of programming. Several further principles to reduce cognitive load
during learning computing content can be found in the work of Tuovinen (2000).

Lee et al. (2011) and Sentance and Waite (2017) are also investigating which pro-
gression students should go through when learning to program. Lee et al. propose
the «Use-Modify-Create Learning Progression» in which learners first use existing
programs, modify them and finally create their own programs. This is followed by
an iterative process of testing, analysing and refining. Sentance and Waite introduce
the teaching approach PRIMM, which is based on the work of Lee et al. among oth-
ers. PRIMM is the abbreviation for Predict, Run, Investigate, Modify and Make. In both
scaffolding approaches, students first work with already existing programs and grad-
ually make them their own until they create their own programs.

In his computing guide for primary teachers, Berry (2013) states several aspects
of meaningful and effective learning in computing which go back to the work of
Howland et al. (2011). Students should actively engage in the learning process, they
should be able to construct both meaning and a result, and if possible, they should
have a certain choice over how they work on a task. Furthermore, the tasks should be
linked to the students' own experience and allow working collaborative.

Franklin et al. (2015) also give specific advice for teaching computer science in
primary schools. Their guidelines are based on their experiences in developing, pi-
loting and evaluating a scratch-based computational thinking curriculum and refer
to different topics such as providing feedback, learning environment or teaching
materials. The following tips seem highly relevant for developing computer science
courses for primary schools:
1.	 Avoid down- and uploading files from a shared computer,
2.	 limit or avert the use of worksheets in the computer lab,
3.	 if necessary, tailor writing by giving options to circle answers or drawing pictures,

and
4.	 prepare further options for students who finish the tasks faster than others.

63

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Links to Computer Science in the Bavarian Primary School Curriculum
In Germany, schools started to teach CS during the 1960ies, and since then, the sub-
ject underwent several drastic changes and transformations (Hubwieser 2012). How-
ever, only in few federal states of Germany computer science is a mandatory subject
and cannot be found in the curricula of primary schools. In the current primary school
curriculum of Bavaria, media education is mentioned as one of the overarching edu-
cation goals and is described as knowledge and skills to act appropriately, self-deter-
minedly and responsibly in the multimedia influenced society (StMBKWK 2014, 37).
Even if programming or computer science in general are not explicitly mentioned, it
surely can contribute to the development of media competence (Tulodziecki 2016)
which includes knowledge and reflection on the structures of media (Schorb 2009).
In the competence model of mathematics, the Bavarian primary school curriculum
describes modelling and problem solving as one of the process-related competen-
cies that students should develop during their time in primary school (StMBKWK
2014, 106).

Theoretical Framework
The literature findings were also very consistent with the results of our interviews
with primary school teachers (see Funke et al. 2016). They suggested avoiding too
much theory by a high practical relevance of the tasks and to take up the students’
ideas and suggestions in order to achieve meaningful results. To show that teamwork
is also very important in computer science, it was recommended that the students
get opportunities to collaborate.

The results of the literature review and the interviews led to various design prin-
ciples, to which we aligned the design of the course:

The course should facilitate active learning and collaborative work
Both in developmental psychology, as well as in the field of computer science edu-
cation, researchers stress the importance of active learning. Also in our course, the
students should have the possibility to be active from the beginning and to gradually
get a deeper insight into the subject through their own actions. The focus should
therefore be on student activity and hands-on experiences, avoiding long phases of
front-facing teaching. Furthermore, we want to provide opportunities to work col-
laboratively, which is also described as beneficial for the students' skill development
and their motivation. Especially when it comes to the handling of the computer, we
assume there will certainly be some students who are well versed and could help
other students when collaborating.

64

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

The course should go from the known to the unknown
Linking the teaching content and tasks to the students' everyday life and experience
is a common practice not only in primary school. In our course, we want to build
on the students' previous knowledge and provide examples and tasks to which the
students can relate. This can refer to the form of the tasks as well as to the content
or context. Especially at the beginning of the course, tasks should be created which
they know in a similar form from other school subjects or everyday situations.

The course should enable the students to undergo different problem-solving steps and
to solve problems independently
The development of problem-solving skills is not only important in terms of algo-
rithms and programming but is also seen as a broadly applicable thinking compe-
tence required in various domains and subjects (Grover and Pea 2018). Since mode-
ling and problem-solving can already be found in the Bavarian primary school curric-
ulum, it could also be a way to cover algorithms and programming in school without
having an own subject of computer science.

The course concept itself and the design of the tasks should put problem-solving
in the foreground and give the students the opportunity of going through the dif-
ferent steps of the process. In addition, we want to prepare visual aids to help the
students solve problems and guide them when working independently.

The course should give the students the opportunity to encounter the fundamental
algorithmic structures in different ways
Following Bruner's argumentation that children should have the opportunity to
encounter new concepts several times in various manners, we decided to use dif-
ferent teaching approaches. At first, they should get to know the computer science
concepts with physical actions, which can be met very well with the CS unplugged
approach that is distinguished by social activities, group problem-solving and high
engagement of the students without actually working on computers (Bell, Witten,
and Fellows 2015). After that, the students work within a programming environment
on a computing device. To provide a child-friendly programming environment and
avoid frustrating syntax errors, we decided to use the block-based language Scratch
(Maloney et al. 2010).

Furthermore, we want to take into account the Use-Modify-Create Framework
(Lee et al. 2011) and the PRIMM approach (Sentance and Waite 2017) and offer tasks
where the students first work with existing programs and gradually make them their
own until they create their own programs.

65

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

The course should reduce cognitive load for the students by focusing on the fundamen-
tal algorithmic structures and principles of programming
As the students already get familiar with the CS concepts in the unplugged activi-
ties, we also want to reduce the students' germane cognitive load while working
in the programming environment. To further simplify working with Scratch, we al-
ready introduce the characteristic programming blocks during the unplugged part.
Corresponding to the blocks in Scratch, we will manufacture haptic programming
blocks for the processing of the tasks. Since the printed and laminated blocks are
equipped with magnets and velcro straps, they can be used both on the blackboard
and on sheets of fabric, e.g. felt. The idea is to improve orientation in the unfamiliar
programming environment and decrease extraneous cognitive load, which could be
caused by the numerous features and new impressions within Scratch.

The course should provide motivating and cognitive activating programming tasks
Our literature review revealed that motivation and cognitive activation have a major
impact on students' learning results. In order to increase the students' personal mo-
tivation, we want to choose a specific context for the course that runs through the
entire course, the tasks and materials. This context is to be linked with the students'
personal experiences, it should enable a lively and entertaining communication of
content and offer a broad spectrum of tasks. Furthermore, neither boys nor girls
should be predominantly associated with the topic.

To develop motivating tasks, we also want to follow the results of Martin (2017),
who concluded that motivating programming tasks are open, relevant to daily life
experience, can be personalized and shared with others. In addition, the design of
the tasks should focus on the cognitive activation of the students.

Course Design
During the course, the students are supposed to learn the basic principles of pro-
gramming. They should understand how a computer program works, get familiar
with the programming environment Scratch and be enabled to program their own
multimedia projects. At the same time, they ought to enjoy the course and should
have the opportunity to put their creativity into practice.

The course takes place over three days, on which we spend four hours a day with
the children. The theme «circus» runs through the course and most of the tasks as a
consistent motif. Figure 2 shows a schematic overview of the «programming circus»,
its content and learning objectives.

66

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Fig. 2.:	

Day 1: CS unplugged Day 2: Scratch Day 3: Scratch

• solving tasks in the plenum
 and in small groups
• working with haptic Scratch
 blocks and testing the results
 in the classroom

• learning circle with worked
 examples and cognitive
 activating tasks
• additional tasks and
 support material

• more open assignment
• screenplay
• presentation of results

Objective:
The students get an insight
into the basic functions of
algorithms

Objective:
The students get to know
sequences, conditionals
and iterations

Objective:
The students apply the
programming concepts in an
open project

Schematic overview of the course.

Day 1: Computer Science unplugged
Since most of the students do not have any prior knowledge in programming or gen-
eral in computer science, the goal of the first day is to give them a basic idea of how a
computer program works. As a first step, the students' ideas and associations which
they relate to programming are collected in a short query and noted down on the
board or a poster. Depending on how much previous knowledge the students have,
it is possible to continue working with images on which different situations are dis-
played in which programming plays a role.

As an introduction to giving precise and clear instructions, the students get the
task of programming the teacher to do a certain task (e.g. open the window, walk
into a certain corner of the classroom). The teacher acts like a robot and only moves
if given the right commands. How to communicate with the robot must be found out
by the students. To further practice giving commands, the students have to convert
a pictorial craft instruction for a name tag into unambiguous language-based com-
mands. Afterwards, they build their name tags following one of the two instructions.
In these first exercises, it quickly becomes clear that it is not easy to formulate some-
thing in such a way that it means the same for everyone. The teacher discusses with
the students that this is one reason why there are defined programming languages
for Computers, e.g. Scratch. To get to know the first programming blocks, we once
more use the «human robot». Instead of using everyday commands, the students
have to use haptic Scratch blocks to solve a short task.

In order to become familiar with the haptic Scratch blocks, the students work in
groups to solve more complex tasks in a grid that is built up from carpet tiles (see.
Fig. 3). To take up the circus theme, they program circus characters to complete dif-
ferent missions, e.g., a monkey that wants to be led to his banana or a forgetful clown
who wants to find his missing belongings (see Fig. 4). They create the programs using
the haptic Scratch blocks, execute it in the grid and check them for errors. If neces-
sary, they debug their programs.

67

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Fig. 3.:	 Working with the haptic programming blocks (left); testing the solutions in the field
(right).

We designed the tasks that they can be solved by using selections and iterations,
but also by sequences. To help the students – particularly at the beginning – with
their tasks, we prepared signs that show the different steps that must be carried out
during the problem-solving process. They can be hung up in the classroom and help
the students when they are working on a task.

Fig. 4.:	

START

ZIEL

Der Zirkusdirektor hat eine Aufgabe
für den Affen:

Wenn er „Los!“ ruft, soll er entlang der roten
Felder zur Banane laufen.

Los!

START

Der Clown weiß nicht mehr, wo er seine
Sachen versteckt hat. Er erinnert sich
aber, dass er sie unter rote Felder gelegt
hat.

Was kann er tun, um alles zu finden?

ZIEL

Sections from the students' task sheets.

Day 2: Scratch Learning Circle
On the second day, we want to enable the students to create simple multimedia
products in the block-based programming environment Scratch. Thus, every student
works on a computer. We composed a learning circle in which the core operations

68

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

of Scratch get gradually introduced and that every child can handle at its own pace.
Starting from questions regarding the software handling, the individual circle cards
lead from simple sequences to the implementation of iterations and conditionals.
For example, the students program the welcome greeting from the circus director
(see Fig. 5), a joke-telling clown, a tiger crossing the arena and a dancing bear.

Fig. 5.:	

2. Sprechen
Der Zirkusdirektor sagt etwas

Öffne den Ordner „Zirkel“.

Öffne dort die Datei
„2. Sprechen“.

1

Klicke auf Aussehen!2

3 Schiebe die Kachel
insgesamt drei mal nach rechts.

So soll es aussehen:

4 Klicke auf die weißen Felder und ändere den
Text des Direktors:

6 Klicke auf „Datei“ und wähle „Speichern“ aus!

7 Du kannst das Fenster jetzt schließen.

5 Klicke auf die grüne Flagge um
das Programm zu starten!

Front (left) and back (right) of a circle card.

To reduce extraneous cognitive load, we provide worked examples that the stu-
dents recreate on their own computing devices. After every example, they work on
an exercise that has been designed to comply with the principles of cognitive acti-
vating tasks: the introduced function must be slightly modified or used in a different
context. To face the students' expected variety in knowledge and learning pace, we
prepared additional exercises as well as helpful tips for the more complex tasks.

When designing the materials for the learning circle, we tried to realize several
principles of Mayer’s cognitive theory of multimedia learning. For example, we used
recurring colors to highlight the organization of the cards, we addressed the students
directly and tried to use both, words and pictures, and placed them near to each
other.

69

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Day 3: Open Scratch Projects
Our goal for the third day was to get an impression of what the students have learned
so far and what they can apply in more open tasks. The students should think of their
own Scratch stories, write these down in a script (Figure 6, left) and implement these
in Scratch (Figure 6, right). To get comparable results, we set the following manda-
tory requirements for the students’ projects. The programs should 1) work on more
than one sprite 2) move the sprites during execution 3) comprise at least one loop
and 4) include at least one conditional statement. After meeting these requirements,
the students should continue their programming work without any further guide-
lines.

 Projekt-Drehbuch von:

Wer macht etwas?
Welche Figuren sind auf der Bühne?Wer?

Was machen die Figuren?
Was ist die Handlung?Was?

Wie kannst du die Handlung in Scratch umsetzen?
Kreuze die Blöcke an, die du dafür verwenden musst.Wie?

Fig. 6.:	 Project script (left) and part of a student Scratch project (right).

At the end of the third course day, the students present their programs in front of
the class and have the opportunity to comment on their project. There is an applause
for each project, and the students get a certificate for the participation in the course.
The programming circus ends with a reflection on what the students think they have
learned, what they liked the best and what they didn’t like the previous days.

70

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Conclusion and Future Work
The design-based research approach provided a viable research framework for the
development of a programming course concept for primary schools. It enabled us
to take into account relevant theories from various disciplines and best practices
in the field of computer science education. The iterative design cycles and evalua-
tions made it possible to focus on a variety of course elements and to apply multi-
ple research methods. In this way, aspects could also be investigated that were not
planned in the first place and the course concept could be continuously improved.

However, the openness of the methodology can also be a challenge. Regarding
the phase of preliminary research that is described in this article, there are no spe-
cific guidelines on how to carry out the literature review. The fact that in our case
researchers with different professional backgrounds were involved in the selection
of the relevant thematic areas and theories was very helpful. By drawing on the ex-
pertise of a trained primary school teacher and a researcher in computer science
education, we were able to perform a very comprehensive and varied literature re-
view. This interdisciplinary collaboration was also advantageous in the development
of the theoretical framework and the course concept.

A shortage of skills or knowledge among the researchers can have a very limiting
effect on the intermediate results of the DBR process. If they lack sufficient knowl-
edge and experience, they consequently are not able to achieve optimal solutions.
Especially when, as in our case, the researchers are also evaluators and implement-
ers, it is important to make research open to professional scrutiny and criticism by
people outside the project (McKenney, Nieveen, and van den Akker 2006). We were
fortunate that we regularly had the opportunity to discuss both the theoretical
framework and the course concept within our team that consists of people with di-
verse knowledge and levels of experience.

Despite these challenges, we consider DBR to be an important innovation op-
portunity for didactic research since the transfer between theory and practice is one
of the most important mission when being a researcher in computer science educa-
tion. Through the synergy of theory and practice, design-based research can lead to
development and improvement in both areas.

Our future work will focus on further assessments and analyses of the data we
collected in the field tests. In addition, we will investigate whether primary school
teachers can work with the course concept and are willing to apply it in their teach-
ing.

Based on the course concept, we already developed an in-service professional
development workshop for primary school teachers (Geldreich, Talbot, and Hub-
wieser 2018). Thirty-nine teachers from 20 primary schools all over Bavaria have al-
ready participated in the teacher training and will try out the course concept with
their students. In doing so, we want to ensure that our preliminary results, which

71

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

are very setting-specific, can be generalized and replicated with a larger sample and
real-life teaching conditions. The results of our future research will be used to further
specify the design principles for primary school programming courses and thus will
hopefully make a research contribution not only on a practical but also on a theoreti-
cal level.

References
Akker, Jan van den, Koeno Gravemeijer, Susan McKenney, and Nienke Nieveen, eds. 2006. Edu-

cational Design Research. New York: Routledge.

Armoni, Michal. 2018. «Training Teachers for K-6 Computing Education». ACM Inroads 9 (3):
18–19. https://doi.org/10.1145/3231600.

Baumert, Jürgen, Mareike Kunter, Werner Blum, Martin Brunner, Thamar Voss, Alexan-
der Jordan, Uta Klusmann, Stefan Krauss, Michael Neubrand, and Yi-Miau Tsai. 2010.
«Teachers' Mathematical Knowledge, Cognitive Activation in the Classroom, and Stu-
dent Progress». American Educational Research Journal 47 (1): 133–180. https://doi.
org/10.3102/0002831209345157.

Bell, Tim, and Caitlin Duncan. 2018. «Teaching Computing in Primary Schools». In Computer
Science Education, edited by Sue Sentance, Erik Barendsen, and Carsten Schulte. London
and New York and Oxford and New Delhi and Sydney: Bloomsbury Academic.

Bell, Tim, Ian H. Witten, and Mike Fellows. 2015. CS Unplugged: An Enrichment and Extension
Programme for Primary-Aged Students. 3rd ed.

Berry, Miles. 2013. Computing in the National Curriculum: A Guide for Primary Teachers. Bed-
ford: Newnorth Print, Ltd.

BMBF. 2016. Bildungsoffensive für die digitale Wissensgesellschaft: Strategie des Bundesminis-
teriums für Bildung und Forschung. Berlin: Bundesministerium für Bildung und Forschung.

Brown, Ann L. 1992. «Design Experiments: Theoretical and Methodological Challenges in Crea-
ting Complex Interventions in Classroom Settings». The Journal of the Learning Sciences 2
(2): 141–178. https://doi.org/10.1207/s15327809jls0202_2.

Brown, Neil C. C., Sue Sentance, Tom Crick, and Simon Humphreys. 2013. «Restart: The Resur-
gence of Computer Science in UK Schools». ACM Transactions on Computing Education 1
(1). https://doi.org/10.1145/2602484.

Brühwiler, Christian, and Peter Blatchford. 2011. «Effects of Class Size and Adaptive Teaching
Competency on Classroom Processes and Academic Outcome». Learning and Instruction 21
(1): 95–108. https://doi.org/10.1016/j.learninstruc.2009.11.004.

Bruner, Jérome. 1966. Towards a Theory of Instruction. Cambridge: Harvard University Press.

Case, Robbie. 1992. «Neo-Piagetian Theories of Child Development». In Intellectual Develop-
ment, edited by Robert J. Sternberg and Cynthia A. Berg. New York: Cambridge University
Press.

72

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Caspersen, Michael E., and Jens Bennedsen. 2007. «Instructional Design of a Program-
ming Course – A Learning Theoretic Approach». In Proceedings of the Third Interna-
tional Workshop on Computing Education Research. New York, NY: ACM. https://doi.
org/10.1145/1288580.1288595.

Chandler, Paul, and John Sweller. 1991. «Cognitive Load Theory and the Format of Instruction».
Cognition and Instruction 8 (4): 193–332. https://doi.org/10.1207/s1532690xci0804_2.

Collins, Allan. 1992. «Towards a Design Science of Education». In New Directions in Educational
Technology, edited by Eileen Scanlon and Tim O’Shea, 15–22. New York: Springer. https://
doi.org/10.1007/978-3-642-77750-9_2.

Collins, Allan, Diana Joseph, and Katerine Bielaczyc. 2004. «Design Research: Theoretical and
Methodological Issues». The Journal of the Learning Sciences 13 (1): 15–42. https://doi.
org/10.1207/s15327809jls1301_2.

Creemers, Bert, and Leonidas Kyriakides. 2007. The Dynamics of Educational Effectiveness: A
Contribution to Policy, Practice and Theory in Contemporary Schools. London, New York:
Routledge.

Duncan, Caitlin, Tim Bell, and Steve Tanimoto. 2014. «Should Your 8-Year-Old Learn Coding?»
In Proceedings of the 9th Workshop in Primary and Secondary Computing Education, 60–69.
New York, NY, USA: ACM. https://doi.org/10.1145/2670757.2670774.

Dunkin, Michael J., and Bruce Biddle. 1974. The Study of Teaching. New York: Holt, Rinehart
and Winston.

Falkner, Katrina, Rebecca Vivian, and Nickolas Falkner. 2014. «The Australian Digital Technolo-
gies Curriculum: Challenge and Opportunity». In Proceedings of the Sixteenth Australasian
Computing Education Conference, edited by Jacqueline Whalley and Daryl D’Souza. New
York: ACM.

Franklin, Diana, Charlotte Hill, Hilary Dwyer, Ashley Iveland, Alexandria Killian, and Dani-
elle Harlow. 2015. «Getting Started in Teaching and Researching Computer Science in
the Elementary Classroom». In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 552–557. SIGCSE ’15. New York, NY, USA: ACM. https://doi.
org/10.1145/2676723.2677288.

Funke, Alexandra, Marc Berges, and Peter Hubwieser. 2016. «Different Perceptions of Com-
puter Science». In 2016 International Conference on Learning and Teaching in Computing
and Engineering (LaTICE), edited by Sridhar Iyer and Neena Thota, 14–18. IEEE. https://doi.
org/10.1109/LaTiCE.2016.1.

Funke, Alexandra, and Katharina Geldreich. 2017. «Gender Differences in Scratch Programs of
Primary School Children». In Proceedings of the 12th Workshop on Primary and Secondary
Computing Education – WiPSCE ’17, 57–64. Nijmegen, Netherlands: ACM Press. https://doi.
org/10.1145/3137065.3137067.

Funke, Alexandra, Katharina Geldreich, and Peter Hubwieser. 2016. «Primary School Teachers’
Opinions about Early Computer Science Education». In Proceedings of the 16th Koli Calling
International Conference on Computing Education Research - Koli Calling ’16, 135–139. New
York, NY, USA: ACM. https://doi.org/10.1145/2999541.2999547.

73

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Funke, Alexandra, Katharina Geldreich, and Peter Hubwieser. 2017. «Analysis of Scratch Pro-
jects of an Introductory Programming Course for Primary School Students». In Proceedings
of the 2017 IEEE Global Engineering Education Conference (EDUCON), 1229–1236. IEEE.

Geldreich, Katharina, Mike Talbot, and Peter Hubwieser. 2018. «Off to New Shores: Preparing
Primary School Teachers for Teaching Algorithmics and Programming». In Proceedings of
the 13th Workshop in Primary and Secondary Computing Education on – WiPSCE ’18, 1–6.
Potsdam, Germany: ACM Press. https://doi.org/10.1145/3265757.3265783.

Gray, Simon, Caroline St. Clair, Richard James, and Jerry Mead. 2007. «Suggestions for Gradu-
ated Exposure to Programming Concepts Using Fading Worked Examples». In Proceedings
of the Third International Workshop on Computing Education Research, 99–110. New York,
NY: ACM. https://doi.org/10.1145/1288580.1288594.

Grover, Shuchi, and Roy Pea. 2018. «Computational Thinking: A Competency Whose Time Has
Come». In Computer Science Education, edited by Sue Sentance, Erik Barendsen, and Cars-
ten Schulte, 19–38. London and New York and Oxford and New Delhi and Sydney: Blooms-
bury Academic.

Hazzan, Orit, Tami Lapidot, Noa Ragonis. 2011. Guide to Teaching Computer Science: An Activi-
ty-Based Approach. London: Springer. https://doi.org/10.1007/978-0-85729-443-2.

Howland, Jane L., Jonassen, David H., and Rose M. Marra. 2011. Meaningful Learning with Tech-
nology. 4th ed. London: Pearson Education.

Hubwieser, Peter. 2012. «Computer Science Education in Secondary Schools – The Introduc-
tion of a New Compulsory Subject». ACM Transactions on Computing Education 12 (4): 1–41.
https://doi.org/10.1145/2382564.2382568.

Jahn, Dirk. 2014. «Durch Das Praktische Gestalten von Didaktischen Designs Nützliche Er-
kenntnisse Gewinnen: Eine Einführung in Die Gestaltungsforschung». W&E 66 (1): 3–15.

Jong, Ton de. 2010. «Cognitive Load Theory, Educational Research, and Instructional Design:
Some Food for Thought». Instructional Science 38 (2): 105–134. https://doi.org/10.1007/
s11251-009-9110-0.

Keller, John M. 1983. «Motivational Design of Instruction». In Instructional-Design Theories and
Models: An Overview of Their Current Status, edited by Charles M. Reigeluth, 383–434. Ma-
wah: Lawrence Erlbaum Associates Inc.

Keller, John M. 1987. «Development and Use of the ARCS Model of Instructional Design». Jour-
nal of Instructional Development 10 (3): 2–10. https://doi.org/10.1007/BF02905780.

Khenner, Evgeniy, and Igor Semakin. 2014. «School Subject Informatics (Computer Sci-
ence) in Russia». ACM Transactions on Computing Education 14 (2): 1–10. https://doi.
org/10.1145/2602489.

Klieme, Eckhard, Christine Pauli, and Kurt Reusser. 2009. «The Pythagoras Study. Investigating
Effects of Teaching and Learning in Swiss and German Mathematics Classrooms». In The
Power of Video Studies in Investigating Teaching and Learning in the Classroom, edited by
Janik Tomás and Tina Seidel, 137–160. Münster: Waxmann.

Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-
Smith, and Linda Werner. 2011. «Computational Thinking for Youth in Practice». ACM In-
roads 2 (1): 32. https://doi.org/10.1145/1929887.1929902.

74

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010.
«The Scratch Programming Language and Environment». ACM Transactions on Computing
Education 10 (4): 1–15. https://doi.org/10.1145/1868358.1868363.

Martin, Christopher, James. 2017. Designing Engaging Learning Experiences in Programming:
Dissertation. Dundee: University of Dundee.

Mayer, Richard E. 2001. Multimedia Learning. New York: Cambridge University Press.

Mayer, Richard E. 2004. «Should There Be a Three-Strikes Rule Against Pure Discovery Lear-
ning?». American Psychologist 59 (1): 14–19. https://doi.org/10.1037/0003-066X.59.1.14.

Mayer, Richard E. 2005. «Introduction to Multimedia Learning». In The Cambridge Handbook
of Multimedia Learning, edited by Richard E. Mayer, 1–26. New York: Cambridge University
Press.

McKenney, Susan, Nienke Nieveen, and Jan van den Akker. 2006. «Design Research from a Cur-
riculum Perspective». In Educational Design Research, edited by Jan van den Akker, Koeno
Gravemeijer, Susan McKenney, and Nienke Nieveen, 67–90. New York: Routledge.

Merrill, David M., Leston Drake, Mark J. Lacy, and Jean Pratt. 1996. «Reclaiming Instructional
Design». Educational Technology 36 (5): 5–7. http://m.firstprinciplesofinstruction.com/Pa-
pers/Reclaiming.PDF.

Morra, Sergio, Camilla Gobbo, Zopito Marini, and Ronald Sheese. 2007. Cognitive Development:
Neo-Piagetian Perspectives. New York: Psychology Press.

OECD. 2013. PISA 2012 Results: Ready to Learn: Students’ Engagement, Drive and Self-Beliefs
(Volume III). 2013. Paris: OECD.

Petre, Marian, and Blaine Price. 2004. «Using Robotics to Motivate `Back Door’ Lear-
ning». Education and Information Technologies 9 (2): 147–158. https://doi.org/10.1023/
B:EAIT.0000027927.78380.60.

Piaget, Jean. 1976. The Child and Reality. New York: Penguin Books.

Piaget, Jean, and Bärbel Inheler. 1969. The Psychology of the Child. New York: Basic Books.

Pianta, Robert C., and Bridget K. Hamre. 2009. «Conceptualization, Measurement, and Impro-
vement of Classroom Processes: Standardized Observation Can Leverage Capacity». Edu-
cational Researcher 38 (2): 109–119. https://doi.org/10.3102/0013189X09332374.

Plomp, Tjeerd. 2007. «Educational Design Research: An Introduction». In An Introduction to
Educational Design Research, edited by Tjeerd Plomp and Nienke Nieveen, 9–35. Enschede:
SLO.

Prottsman, Kiki. 2014. «Computer Science for the Elementary Classroom». ACM Inroads 5 (4):
60–63. https://doi.org/10.1145/2684721.2684735.

Reinmann, Gabi. 2005. «Innovation Ohne Forschung? Ein Plädoyer Für Den Design-Based Re-
search-Ansatz in Der Lehr-Lernforschung». Unterrichtswissenschaft 33 (1): 52–69.

Richey, Rita C., and James D. Klein. 2005. «Developmental Research Methods: Creating Know-
ledge from Instructional Design and Development Practice». Journal of Computing in High-
er Education 16 (2): 23–38. https://doi.org/10.1007/BF02961473.

75

Katharina Geldreich, Alexandra Simon and Peter Hubwieser www.medienpaed.com > 15.02.2019

Schorb, Bernd. 2009. «Gebildet Und Kompetent. Medienbildung Statt Medienkompetenz?» Me-
dien+ Erziehung, no. 5: 50–56.

Seidel, Tina, and Richard J. Shavelson. 2007. «Teaching Effectiveness Research in the Past De-
cade: The Role of Theory and Research Design in Disentangling Meta-Analysis Results». Re-
view of Educational Research 77 (4): 454–499. https://doi.org/10.3102/0034654307310317.

Sentance, Sue, and Jane Waite. 2017. «PRIMM: Exploring Pedagogical Approaches for Teaching
Text-Based Programming in School». In Proceedings of the 12th Workshop on Primary and
Secondary Computing Education – WiPSCE ’17, 113–14. Nijmegen, Netherlands: ACM Press.
https://doi.org/10.1145/3137065.3137084.

Shuell, Thomas. 1996. «Teaching and Learning in a Classroom Context». In Handbook of Edu-
cational Psychology, edited by David C. Berliner and Robert C. Calfee, 726–764. New York:
Macmilan.

StMBKWK. 2014. LehrplanPLUS Grundschule: Lehrplan für die Bayerische Grundschule. Mün-
chen: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst.

StMWI. 2017. Bayern Digital II: Investitionsprogramm für die Digitale Zukunft Bayerns. München:
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie.

Sweller, John, Jeroen J. G. van Merriënboer, and Fred G. W. C. Paas. 1998. «Cognitive Architec-
ture and Instructional Design». Educational Psychology Review 10 (3): 251–296.

The Design-Based Research Collective. 2003. «Design-Based Research: An Emerging Paradigm
for Educational Inquiry». Educational Researcher 32 (1): 5–8.

Topi, Heikki. 2015. «Gender Imbalance in Computing». ACM Inroads 6 (4): 22–23. https://doi.
org/10.1145/2822904.

Tulodziecki, Gerhard. 2016. «Konkurrenz Oder Kooperation? Zur Entwicklung Des Verhältnis-
ses von Medienbildung Und Informatischer Bildung». MedienPädagogik: Zeitschrift Für The-
orie Und Praxis Der Medienbildung (25: Medienbildung Und Informatische Bildung – Quo
Vadis?): 7-25. https://doi.org/10.21240/mpaed/25/2016.10.25.X.

Tuovinen, Juhani E. 2000. «Optimising Student Cognitive Load in Computer Education». In Pro-
ceedings of the Australasian Conference on Computing Education, 235–241. New York, NY,
USA: ACM. https://doi.org/10.1145/359369.359405.

Vygotsky, Lew Semjonowitsch. 1978. Mind in Society: The Development of Higher Psychological
Processes. Cambridge: Harvard University Press.

Wang, Feng, and Michael J. Hannafin. 2005. «Design-Based Research and Technology-Enhan-
ced Learning Environments». Educational Technology Research and Development 53 (4):
5–23. https://doi.org/10.1007/BF02504682.

Weinert, Franz E., Friederich-W. Schrader, and Andreas Helmke. 1989. «Quality of Instruction
and Achievement Outcomes». International Journal of Educational Research 13 (8): 895–
914. https://doi.org/10.1016/0883-0355(89)90072-4.

Winne, Philip H. 1987. «Why Process-Product Research Cannot Explain Process-Product Fin-
dings and a Proposed Remedy: The Cognitive Mediational Paradigm». Teaching and Teacher
Education 3 (4): 333–356.

