Effekte der Teilnahme am Wahlpflichtfach Coding und Robotik auf die Entwicklung des Fähigkeitsselbstkonzepts bei Schüler:innen der Sekundarstufe I im österreichischen Burgenland
PDF

Schlagworte

Computational Thinking
Educational Robotics
Selbstkonzept
Digitale Kompetenz
Schule

Zitationsvorschlag

Leitgeb, Thomas, Wolfram Rollett, und Alexander Zimmermann. 2023. „Effekte Der Teilnahme Am Wahlpflichtfach Coding Und Robotik Auf Die Entwicklung Des Fähigkeitsselbstkonzepts Bei Schüler:Innen Der Sekundarstufe I Im österreichischen Burgenland“. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung 2023 (Occasional Papers): 279-302. https://doi.org/10.21240/mpaed/00/2023.08.24.X.

Lizenz

Copyright (c) 2023 Thomas Leitgeb, Wolfram Rollett, Alexander Zimmermann

Creative-Commons-Lizenz
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.

Abstract

Aufgrund der zunehmend alle Lebensbereiche durchdringenden Digitalisierung reichen Kompetenzen, wie sie im traditionellen schulischen Curriculum der Sekundarstufe vermittelt werden, für eine erfolgreiche gesellschaftliche Teilhabe nicht mehr aus. International wird diesem Umstand durch die Entwicklung und Implementierung schulischer Curricula, die sich am Konzept des Computational Thinkings (CT) in Verbindung mit Educational Robotics (ER) orientieren, Rechnung getragen. Wenn dabei lebensweltliche Problemstellungen anschaulich anhand von digitalen Technologien bearbeitet werden, können auf diese Weise eine Reihe digitaler Kompetenzen aber auch verschiedene kognitive, soziale und motivationale Kompetenzen gefördert werden. Diesem Ansatz folgt das im österreichischen Burgenland in der Sekundarstufe I eingeführte Wahlpflichtfach (Wpf.) Coding und Robotik (C & R). In der vorliegenden Arbeit wird untersucht, ob sich für die an dem Wpf. teilnehmenden Schüler:innen Effekte auf das Fähigkeitsselbstkonzept (FSK) im Umgang mit digitalen Medien bzw. digitalen Technologien und in Bezug auf das schulbezogene akademische Selbstkonzept zeigen. In einer längsschnittlichen Vollerhebung wurden dazu 1.383 Schüler:innen der siebenten Schulstufe an burgenländischen Mittelschulen zu drei Zeitpunkten (Beginn, Mitte und Ende des Schuljahres 2018/19) untersucht. 404 der Schüler:innen besuchten das Wpf. C & R, 979 andere Wahlpflichtfächer. Die Ergebnisse stützen die Annahme, dass sich schulische Lernarrangements, die CT in Verbindung mit ER aufgreifen, günstig auf die Entwicklung eines positiven FSK der Schüler:innen auswirken.

https://doi.org/10.21240/mpaed/00/2023.08.24.X

Literatur

Agatolio, Francesca, Patrik Pluchino, Valeria Orso, Emanuele Menegatti, und Luciano Gamberini. 2018. «How Robots Impact Students› Beliefs about Their Learning Skills». In Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ‹18), herausgegeben von Association for Computing Machinery, 47–48. https://doi.org/10.1145/3173386.3177042.

Alimisis, Dimitris, und Chronis Kynigos. 2009. «Constructionism and robotics in education». Teacher Education on Robotic-Enhanced Constructivist Pedagogical Methods: 11–26. Athens: ASPETE. http://roboesl.eu/wp-content/uploads/2017/08/chapter_1.pdf.

Angel-Fernandez, Julian, und Markus Vincze. 2018. «Towards a formal definition of Educational Robotics». Proceedings of the Austrian Robotics Workshop 2018: 37–42. Innsbruck: University Press. https://doi.org/10.15203/3187-22-1-08.

Angeli, Charoula, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce Malyn-Smith, und Jason Zagami. 2016. «A K-6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge.» Journal of Educational Technology & Society 19 (3): 47–57. http://www.jstor.org/stable/jeductechsoci.19.3.47.

Angeli, Charoula, und Michail Giannakos. 2020. «Computational thinking education: Issues and challenges». Computers in Human Behavior 105: 106–85. https://doi.org/10.1016/j.chb.2019.106185.

Anwar, Saira., Nicholas Alexander Bascou, Mushin Menekse, und Asefeh Kardgar. 2019. «A Systematic Review of Studies on Educational Robotics». Journal of Pre-College Engineering Education Research (J-PEER) 9 (2): Article 2. https://doi.org/10.7771/2157-9288.1223.

Balanskat, Anja, und Katja Engelhart. 2015. «Computing our future: Computing programming and coding – Priorities, school curricula and initiatives across Europe». Brüssel: European Schoolnet. http://www.eun.org/documents/411753/817341/Computing+our+future_final_2015.pdf/d3780a64-1081-4488-8549-6033200e3c03.

Barr, Valerie, und Chris Stephenson. 2011. «Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community?» Inroads 2: 48–54. https://doi.org/10.1145/1929887.1929905.

Baumgartner, Peter, Christian Tarnai, Birgit Wolf, und Bernhard Ertl. 2014. «Technologiebasiertes Problemlösen im Kontext der Erwerbstätigkeit». Schlüsselkompetenzen von Erwachsenen – Vertiefende Analysen der PIAAC-Erhebung 2011/2012: 376–94. Wien. Statistik Austria. https://portfolio.peter-baumgartner.net/files/pdf/2014/Baumgartner_et_al_2014_Technologiebasiertes-Problemloesen.pdf.

Brandhofer, Gerhard, und Christian Wiesner. 2018. «Medienbildung im Kontext der Digitalisierung: Ein integratives Modell für digitale Kompetenzen». R&A E-SOURCE 1 (10). https://journal.ph-noe.ac.at/index.php/resource/article/view/574.

Breiter, Andreas, Stefan Welling, und Björn Eric Stolpmann. 2010. «Medienkompetenz in der Schule. Integration von Medien in den weiterführenden Schulen in Nordrhein-Westfalen». Berlin: Vistas. https://www.medienanstalt-nrw.de/fileadmin/user_upload/lfm-nrw/Foerderung/Forschung/Dateien_Forschung/LfM-Band-64.pdf.

Budiyanto, Cucuk, Regina Fitriyaningsih, Faiz Kamal, Rosihan Ariyuana, und Agus Efendi. 2020. «Hands-on Learning In STEM: Revisiting Educational Robotics as a Learning Style Precursor». Open Engineering 10 (1): 649–57. https://doi.org/10.1515/eng-2020-0071.

Bundesministerium für Bildung, Wissenschaft und Forschung. 2018. «Änderung der Verordnung über die Lehrpläne der Neuen Mittelschulen sowie der Verordnung über die Lehrpläne der allgemeinbildenden höheren Schulen». BGBL II Nr. 71/2018. https://www.ris.bka.gv.at/eli/bgbl/II/2018/71/20180419.

Buuren, Stef van, und Karin Groothuis-Oudshoorn. 2011. «mice: Multivariate imputation by chained equations in R». Journal of Statistical Software 45 (3): 1–67. https://doi.org/10.18637/jss.v045.i03.

Catlin, Dave, und Woollard John. 2014. «Educational robots and computational thinking.» In Robotics in Education: current research and innovations, herausgegeben von Muniz Merdan, Wilfried Lepuschitz, Gottfried Koppensteiner, Richard Balogh, und David Obdrzalek, 144–51. Cham: Springer. https://doi.org/10.1007/978-3-030-26945-6.

Chen, Yunshan, Yining Wang, und Yanyan Li. 2023. «The Effectiveness of Teaching Approaches in Computational Thinking Education: A Meta-Analysis». In Proceedings of the 14th International Conference on Education Technology and Computers (ICETC ‹22), herausgegeben von Association for Computing Machinery, 386–92. https://doi.org/10.1145/3572549.3572611.

Cohen, Jacob. 1988. «Statistical power analysis for the behavioral sciences». Hillsdale, N.J.: L. Erlbaum.

Computer Science Teachers Association, und International Society for Technology in Education. 2011. «Operational Definition for Computational Thinking». https://cdn.iste.org/www-root/ct-documents/computational-thinking-operational-definitionflyer.pdf?sfvrsn=2.

Computer Science Teachers Association. 2011. «K-12 Computer Science Standards». Revised 2011. https://www.csteachers.org/Page/standards.

Computer Science Teachers Association. 2017. «CSTA K-12 Computer Science Standards (Revised 2017)». https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf.

Department of Education UK. 2013. «Computing programmes of study: key stages 1, 2, 3 and 4». https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/239067/SECONDARY_national_curriculum_-_Computing.pdf.

Eccles, Jaquelynne. 2005. «Subjective task value and the Eccles et al. model of achievement-related choices.» In Handbook of competence and motivation, herausgegeben von Andrew J. Elliot, und Carol S. Dweck, 105–21. New York: The Guilford Press.

Eguchi, Amy. 2014. «Educational robotics for promoting 21 century skills». Journal of Automation, Mobile Robotics & Intelligent Systems 8 (1): 5–11. https://doi.org/10.14313/JAMRIS_1-2014/1.

Eguchi, Amy. 2016. «Computational thinking with educational robotics». In Proceedings of society for information technology & teacher education international conference, herausgegeben von Gregory Chamblee, und Lee Langub, 79–84. Savannah: Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/p/172306.

Eickelmann, Birgit, Jan Vahrenhold, und Amelie Labusch. 2019a. «Der Kompetenzbereich ‹Computational Thinking›: erste Ergebnisse des Zusatzmoduls für Deutschland im internationalen Vergleich». In ICILS 2018 #Deutschland. Computer- und informationsbezogene Kompetenzen von Schüler:innen im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking, herausgegeben von Birgit Eickelmann, Wilfried Bos, Julia Gerick, Frank Goldhammer, Heike Schaumburg, Knut Schwippert, Martin Senkbeil, und Jan Vahrenhold, 367–98. Münster: Waxmann. http://nbn-resolving.org/urn:nbn:de:0111-pedocs-183309.

Eickelmann, Birgit, Wilfried Bos, und Amelie Labusch. 2019b. «Die Studie ICILS 2018 im Überblick – Zentrale Ergebnisse und mögliche Entwicklungsperspektiven». In ICILS 2018 #Deutschland. Computer- und informationsbezogene Kompetenzen von Schüler:innen im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking, herausgegeben von Birgit Eickelmann, Wilfried Bos, Julia Gerick, Frank Goldhammer, Heike Schaumburg, Knut Schwippert, Martin Senkbeil, und Jan Vahrenhold, 7–32. Münster, New York: Waxmann. http://nbn-resolving.org/urn:nbn:de:0111-pedocs-183309.

Fadel, Charles, Maya Bialik, und Bernie Trilling. 2017. «Die vier Dimensionen der Bildung – Was Schüler:innen im 21. Jahrhundert lernen müssen». Hamburg: ZLL21.

Ferrari, Anusca. 2013. «DIGCOMP: A framework for developing and understanding digital competence in Europe». http://digcomp.org.pl/wp-content/uploads/2016/07/DIGCOMP-1.0-2013.pdf.

Fislake, Martin. 2022. «Educational Robotics Between Coding and Engineering Education. » In Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom, herausgegeben von Information Resources Management Association, 824–57. Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-6684-2411-7.ch036.

Göthlich, Stephan E. 2007. «Zum Umgang mit fehlenden Daten in grosszahligen empirischen Erhebungen». In Methodik der empirischen Forschung, herausgegeben von Sönke Albers, Daniel Klapper, Udo Konradt, Achim Walter, und Joachim Wolf, 119–34. Wiesbaden: Gabler.

Graham, John, Allison Olchowski, und Tamika Gilreath. 2007. «How Many Imputations Are Really Needed? Some Practical Clarifications of Multiple Imputation Theory». Prevention Science: the Official Journal of the Society for Prevention Research 8: 206–13. https://doi.org/10.1007/s11121-007-0070-9.

Grover, Shuchi, und Roy Pea. 2017. «Computational Thinking: A Competency Whose Time Has Come.» In Computer Science Education: Perspectives on Teaching and Learning in School herausgegeben von Sue Sentance, Erik Barendsen, und Carsten Schulte, 19–38. London: Bloomsbury Academic. https://doi.org/10.5040/9781350057142.ch-003.

Guay, Frederic, Herbert W. Marsh, und Michel Bolvin. 2003. «Academic self-concept and academic achievement: Developmental perspectives on their causal ordering». Journal of educational Psychology 95 (1): 124–36. https://doi.org/10.1037/0022-0663.95.1.124.

Guggemos, Josef. 2021. «On the predictors of computational thinking and its growth at the high-school level». Computers & Education 161. https://doi.org/10.1016/j.compedu.2020.104060.

Hansford, Brian, und J. Hattie. 1982. «The relation between self and achievement/ performance measures». Review of Educational Research 52: 123–42. https://doi.org/10.3102%2F00346543052001123.

Heller, Kurt, und Christoph Perleth. 2000. «Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision (KFT 4-12+R)». Göttingen Hogrefe.

Huang, Chiungjung. 2011. «Self-concept and academic achievement: A meta-analysis of longitudinal relations». Journal of School Psychology 49 (5): 505–28. https://doi.org/10.1016/j.jsp.2011.07.001.

Huber, Ludwig. 2009. «Warum Forschendes Lernen nötig und möglich ist». In Forschendes Lernen im Studium. Aktuelle Konzepte und Erfahrungen, herausgegeben von Ludwig Huber, Julia Hellmer, und Friederike Schneider, 9–35. Bielefeld: Universitäts Verlag Webler. https://www.fh-potsdam.de/fileadmin/user_upload/forschen/material-publikation/Huber_Warum_Forschendes_Lernen_noetig_und_moeglich_ist.pdf.

Ilic, Ulas, Halil Ibrahim Haseski, und Ufuk Tugtekin. 2018. «Publication Trends over 10 years of computational Thinking Research». Contemporary Educational Technology 9(2): 131–53. https://doi.org/10.30935/cet.414798.

Ioannou, Andri, und Eria Makridou. 2018. «Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work». Educ Inf Technol 23: 2531–44. https://doi.org/10.1007/s10639-018-9729-z.

Iyer, Sridhar. 2019. «Teaching-Learning of Computational Thinking in K-12 Schools in India». In Computational Thinking Education, herausgegeben von Siu-Cheung Kong, und Harold Abelson, 363–82. Singapore: Springer. https://doi.org/10.1007/978-981-13-6528-7_20.

Joint Information Systems Committee (JISC). 2014. «Developing Digital Literacies» https://www.jisc.ac.uk/guides/developing-digital-literacies.

Karampinis, Tassos. 2018. «Robotics-Based Learning Interventions and Experiences from our Implementations in the RobESL Framework». International Journal of Smart Education and Urban Society 9(1): 1–13. https://doi.org/10.4018/IJSEUS.2018010102.

Kim, Byeongsu, Taehun Kim, und Jonghoon Kim. 2013. «Paper-and-Pencil Programming Strategy toward Computational Thinking for Non-Majors: Design Your Solution». Journal of Educational Computing Research 49(4): 437–59. https://doi.org/10.2190/EC.49.4.b.

Kwon, Sei, und Katri Schroderus. 2017. «Coding in schools: Comparing integration of programming into basic education curricula of Finland and South Korea». Finnish Society on Media Education. http://mediakasvatus.fi/wp-content/uploads/2018/06/Coding-in-schools-FINAL-2.pdf.

Leonard, Jacqueline, Alan Buss, Ruben Gamboa, Monica Mitchell, Olatokunbo Fashola, Tarcia Hubert, und Sultan Almughyirah. 2016. «Using robotics and game design to enhance Children’s self-efficacy, STEM attitudes, and computational thinking skills». Journal of Science Education and Technology 25 (6): 860–76. https://doi.org/10.1007/s10956-016-9628-2.

Leitgeb, Thomas. 2018. «Coding und Robotik für alle». OCG Journal 43(1): 32–33. https://www.ocg.at/sites/ocg.at/files/medien/pdfs/OCG-Journal1801.pdf.

Leitgeb, Thomas. 2019. «Digital-unterstützte Lehrkräftefortbildung am Beispiel Coding und Robotik». Master Thesis, University of Applied Sciences Burgenland. https://www.researchgate.net/publication/336578633_Digital_inkludierte_Lehrerprofessionalisierung_am_Beispiel_von_Coding_und_Robotik_ii.

Leitgeb, Thomas, Alexander Zimmermann, und Wolfram Rollett. 2021. «Der Hochschullehrgang Coding und Robotik für Lehrkräfte an der Pädagogischen Hochschule Burgenland. Konzeption, Implementation und erste Ergebnisse einer Begleitevaluation». MedienPädagogik 42: 152–168. https://doi.org/10.21240/mpaed/42/2021.04.29.X.

Leonard, Jacqueline, Buss, Riuben Gamboa, Monica Mitchell, Olatokunbo Fashola, Tarcia Hubert, und Sultan Almughyirah. 2016. «Using robotics and game design to enhance children›s self-efficacy, STEM attitudes, and computational thinking skills». Journal of Science Education and Technology 25(6): 860-876. https://doi.org/10.1007/s10956-016-9628-2.

Li, Yeping, Alan Schoenfeld, Andrea di Sessa, Arthur Graesser, Lisa Benson, Lyn English, und Richard Duschl. 2020. «Computational Thinking Is More about Thinking than Computing». Journal for STEM Educ Res 3: 1–18. https://doi.org/10.1007/s41979-020-00030-2.

Lodi, Michael, und Simone Martini. 2021. «Computational Thinking Between Papert and Wing.» Science & Education 30: 883–908. https://doi.org/10.1007/s11191-021-00202-5.

Lye, Sze Yee, und Joyce Hwee Ling Koh. 2014. «Review on teaching and learning of computational thinking through programming: What is next for K-12?» Computers in Human Behavior 41: 51–61. https://doi.org/10.1016/j.chb.2014.09.012.

Ma, Xiulin, Jingjing Liu, Sheng Li, Chenyu Fan, und Jing Liang. 2019. «Research on the Curriculum Design of the Computer Public Course Oriented to the Cultivation of Computational Thinking Ability». Creative Education 10: 3270–85. https://doi.org/10.4236/ce.2019.1013250.

Mang, Julia, Natalie Ustjanzew, Ina Lesske, Anja Schiepe-Tiska, und Kristina Reiss. 2019. «PISA 2015 Skalenhandbuch. Dokumentation der Erhebungsinstrumente». Münster: Waxmann. http://nbn-resolving.de/urn:nbn:de:0111-pedocs-174495.

Marsh, Herbert, Olaf Köller, Ulrich Trautwein, Oliver Lüdtke, und Jürgen Baumert. 2005. «Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering». Child Development 76 (2): 397–416. https://doi.org/10.1111/j.1467-8624.2005.00853.x.

Marsh, Herbert, und Alison O›Mara. 2008. «Reciprocal effects between academic self-concept, self-esteem, achievement, and attainment over seven adolescent years: Unidimensional and multidimensional perspectives of self-concept». Personality and Social Psychology Bulletin 34: 542–52. https://doi.org/10.1177/0146167207312313.

Marsh, Herbert, und Andrew Martin. 2011. «Academic self-concept and academic achievement: Relations and causal ordering». British Journal of Educational Psychology 81 (1): 59–77. https://doi.org/10.1348/000709910X503501.

Martinez, Sylvia, und Gary Stager. 2013. «Invent to learn – Making, Tinkering and Engineering in the classroom». Torrance: Constructing Modern Knowledge Press.

Oliver, Steve, and Ronald D. Simpson. 1988. «Influences of attitude toward science, achievement motivation, and science self-concept on achievement in science: A longitudinal study». Science Education 72 (2): 143–55. https://doi.org/10.1002/sce.3730720204.

Pädagogische Hochschule Burgenland (PHB). 2018 «Curriculum Hochschullehrgang Coding und Robotik». https://www.ph-burgenland.at/fileadmin/user_upload/Studium/Hochschullehrgaenge/HLG_Coding_und_Robotik.pdf.

Royston, Patrick, John B. Carlin, und Ian R. White. 2009. «Multiple Imputation of missing values: New features for mim». STATA Journal 9 (2): 252–64. https://doi.org/10.1177/1536867X0900900205.

Rubenstein, Michael, Bo Cimino, Radhika Nagpal, und Justin Werfel. 2015. «AERobot: An affordable one-robot-per-student system for early robotics education». IEEE International Conference on Robotics and Automation (ICRA): 6107–13. https://doi.org/10.1109/ICRA.2015.7140056.

Scheel, Laura, Gergana Vladova, und Andre Ullrich. 2022. «The influence of digital competences, self-organization, and independent learning abilities on students› acceptance of digital learning». Int J Educ Technol High Educ. 19 (1): 44. https://doi.org/10.1186/s41239-022-00350-w.

Scherer Ronny, Fazilat Siddiq, und Bárbara Viveros. 2019. «The Cognitive Benefits of Learning Computer Programming: A Meta Analysis of Transfer Effects». Journal of Psychology 111(5): 764–92. https://doi.org/10.1037/edu0000314.

Scherer Ronny, Fazilat Siddiq, und Bárbara Sánchez Viveros. 2020. «A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions». Computers in Human Behavior 109: Article 106349. https://doi.org/10.1016/j.chb.2020.106349.

Schöne, Claudia, Oliver Dickhäuser, Birgit Spinath, und Joachim Stiensmeier-Pelster. 2002. «Die Skalen zum akademischen Selbstkonzept: Konstruktion und Überprüfung eines neuen Instrumentes.» Zeitschrift für differentielle und diagnostische Psychologie 23 (4): 393–405. https://doi.org/10.1024//0170-1789.23.4.393.

Shi, Wenchong. 2018. «Summary of global research and practice of Computational Thinking». CEA – Computer Engineering and Applications 54 (4): 31–35. http://cea.ceaj.org/EN/Y2018/ V54/I4/31.

Shuler, Carly, Dixie Ching, Armanda Lewis, und Michael Levine. 2009. «Harnessing the Potential of Mobile Technologies for Children and Learning». In Mobile Technology for Children: Designing for Interaction and Learning, herausgegeben von Allison Druin, 43–52. Elsevier. https://doi.org/10.1016/B978-0-12-374900-0.00002-8.

Spannagel, Christian, und Christine Bescherer. 2009. «Computerbezogene Selbstwirksamkeitserwartung in Lehrveranstaltungen mit Computernutzung». Notes on Educational Informatics – Section A: Concepts and Techniques 5(1): 23–43. http://www.ph-ludwigsburg.de/fileadmin/subsites/2e-imix-t-01/user_files/Journal_NEI_-_PDFs_fuer_Webauftritt/Section_A/Volume_5_No_1_2009/NEI_Section_A_Vol._5_No._1_2009_p._23-43_-_Spannagel_Bescherer_-_Computerbezogene_Selbstwirksamkeitserwartungen_in_Lehrveranstaltungen.pdf.

Steiner, Michael, und Klaus Himpsl-Gutermann. 2020. «Computational Thinking Und Kontextorientierung». Medienimpulse 58(1). https://doi.org/10.21243/mi-01-20-21.

Toh, Lai Poh Emily, Albert Causo, Pei-Wenig Tzuo, I-Ming Chen, und Song Huat Yeo. 2016. «A Review on the Use of Robots in Education and Young Children». Journal of Educational Technology & Society 19(2): 148–63. https://www.jstor.org/stable/jeductechsoci.19.2.148.

Undervisningsministeriet. 2018. «Computationel tankegang». https://www.emu.dk/grundskole/teknologiforstaelse.

Wang, Kai, Guo-Yuang Sang, Lan-Zi Huang, Shi-Hua Li, und Jiang-Wen Guo. 2023. «The Effectiveness of Educational Robots in Improving Learning Outcomes: A Meta-Analysis». Sustainability 15: 4637. https://doi.org/10.3390/su15054637.

Warschauer, Mark, und Tina Matuchniak. 2010. «New Technology and Digital Worlds: Analyzing Evidence of Equity in Access, Use, and Outcomes». Review of Research in Education 34(1): 179–225. https://doi.org/10.3102/0091732X09349791.

Wilkins, Jesse. 2004. «Mathematics and science self-concept: An international investigation». The Journal of Experimental Education 72(4): 331–46. https://doi.org/10.3200/JEXE.72.4.331-346.

Wing, Jeannette. 2006. «Computational Thinking». Communication of the ACM 49: 33–35. https://doi.org/10.1145/1118178.1118215.

Zhang, Ningyu, und Gautam Biswas. 2019. «Defining and Assessing Students’ Computational Thinking in a Learning by Modeling Environment». In Computational Thinking Education, herausgegeben von Siu-Cheung Kong, und Harold Abelson, 203–21. Singapore: Springer. https://doi.org/10.1007/978-981-13-6528-7_12.

Zhang, Yanjun, Ronghua Luo, Yi-Zhen Zhu and Yuan Yin. 2021. «Educational Robots Improve K-12 Students’ Computational Thinking and STEM Attitudes: Systematic Review». Journal of Educational Computing Research 59: 1450–81. https://doi.org/10.1177/0735633121994070.